
56 The Delphi Magazine Issue 56

Under Construction:
CORBA Exceptions In Delphi
by Bob Swart

Two months ago, we examined
VisiBroker for Delphi 5. We

used a CORBA server written in
Delphi 5 and showed three possi-
ble ways to connect a Delphi 5
CORBA client to it. This time, we’ll
focus on the use of CORBA
exceptions for Delphi.

WebBroker And IE5
Last time, we ended with a
WebBroker example to return the
HTTP/1.0 401 Unauthorized
headers, as can be seen in Listing 1.

This code worked well with
Netscape Navigator, but shortly
afterwards I found out that it didn’t
quite work in Internet Explorer. For
some reason, Internet Explorer
just showed the output, but never
the login dialog. Strangely enough,
the same approach using the plain
CGI application worked just fine, so
it must have been something spe-
cific to WebBroker applications.

Using IntraBob, my ISAPI
debugger (which can be found on
my website), I finally found that
WebBroker applications don’t use
the StatusCode unless a Reason-
String is specified too. This was
not indicated in the help, so I
missed it. Adding a statement to
Listing 1 to include a ReasonString
isn’t too hard. However, the code
still didn’t appear to work in
Internet Explorer. Careful examina-
tion of CGIApp.pas showed the
code in Listing 2 inside the proce-
dure TCGIResponse.SendResponse.

For some reason, the header
field with the 200 OK or the error
code 401 Unauthorized is not pre-
fixed with HTTP/1.0 but with
Status:. And while this works fine

with Netscape Navigator, it fails to
function correctly inside Internet
Explorer. So, I’ve changed the last
line in Listing 2 to:

AddHeaderItem(StatusString,
‘HTTP/1.0 %s’#13#10);

Which solved my problem with
Internet Explorer. Only one puzzle
remains, and that’s the fact that
neither Netscape Navigator nor
Internet Explorer are able to show
me the name of the Realm in the
login dialog. And we do pass this
information in the Response.Realm
property. The only problem is that
for some reason the procedure
TCGIResponse.SendResponse doesn’t
use the Realm property. In fact, I
found no place at all where this
property was used, so we could
just as well have left the assign-
ment out of Listing 1.

Obviously, this is yet another
bug in WebBroker. In this case, we
need to replace the single call to

AddHeaderItem(
WWWAuthenticate,
‘WWW-Authenticate:%s’
#13#10);

with the following two lines:

StatusString :=
Format(‘WWW-Authenticate: ‘+
‘ %s realm="%s"’#13#10,
[‘%s’, Realm]);

AddHeaderItem(WWWAuthenticate,
StatusString);

The Format replaces the realm
string, while the AddHeaderItem
takes care of inserting the
WWWAuthenticate string at the
correct location.

This final change to the CGIApp
unit resolves the unknown realm
problem. Of course, similar modifi-
cations are needed in the ISAPIApp
unit to ensure that the code for
authentication/realm works fine
for ISAPI DLLs too.

CORBA Exceptions
Back to the main topic for today:
CORBA exceptions. In Delphi 4,
and Delphi 5 without VisiBroker
for Delphi, there was no support
for CORBA-specific exceptions.
Those of you who tried may have
seen the ‘catastrophic failure’ mes-
sage, which is about the only indi-
cation you get as a CORBA client
that something went wrong inside
the CORBA server (ie when the
CORBA server raises an exception,
we always only get a ‘catastrophic
failure’ at the client, without any

procedure TWebModule1.WebModule1WebActionItem3Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var Auth: String;
begin
Auth := Request.Authorization;
if Pos('Basic ',Auth) = 1 then
Delete(Auth,1,6);

Auth := UnBase64(Auth);
if Pos('bswart',Auth) = 0 then begin
{ any "bswart" may enter }
Response.StatusCode := 401;
Response.WWWAuthenticate := 'Basic';
Response.Realm := '/DrBob';
Response.SendResponse;

end else begin
Response.Content := 'Welcome: ['+Request.Authorization+']=['+Auth+'])'

end
end;

➤ Listing 1: WebBroker Authorization example.

if (ReasonString <> '') and (StatusCode > 0) then
StatusString := Format('%d %s', [StatusCode, ReasonString])

else
StatusString := '200 OK';

AddHeaderItem(StatusString, 'Status: %s'#13#10);

➤ Listing 2

April 2000 The Delphi Magazine 57

indication of what went wrong.
This has been very frustrating (at
least to me), when all that went
wrong was an I/O exception or
even an unhandled (by the CORBA
server) StrToInt exception. Even
apart from the fact that we don’t
get any additional information, we
don’t even get a slight indication
what went wrong inside the
CORBA server, so it’s much harder
to pinpoint the exact location.

Fortunately, as I wrote two
months ago, VisiBroker for Delphi
adds support for CORBA excep-
tions, although initially only for
CORBA clients written in Delphi.
We need to wait for a later version
of VisiBroker for Delphi for the
CORBA server support. In the
meantime, however, we can safely
communicate with ‘foreign’
CORBA servers that raise CORBA
exceptions.

In Delphi, we use try..except to
work with ObjectPascal excep-
tions, while in C++ and Java people
use throw..catch to work with
exceptions. When using CORBA
IDL we talk about raising excep-
tions again, just like ObjectPascal.
And although it’s not possible to
actually raise an exception in IDL
(IDL stands for Interface Definition
Language), we must use IDL to
define exception types and specify
which exceptions can be raised by
a given method.

An IDL exception is a record-like
type definition. We can add data
members, but no methods. We also
don’t get inheritance, so you
cannot set up an exception hierar-
chy, which is a shame since that
can become quite handy for nar-
rowing down specific error situa-
tions. For example, in BobNotes,
we had two methods to get and set
the Lines of a specified User. Apart
from the Lines and User, we also
needed to pass a Password argu-
ment. There are at least a number
of things that can go wrong here.
For example, we can define a
PermissionDenied exception, which
can be raised if either the User is
unknown or the Password doesn’t
match the user’s password.
You might consider specifying two
sub-exception types, UserKnown
and PasswordIncorrect, (although

even if you could sub-class IDL
exceptions, I personally wouldn’t
use those because of the increased
security risks involved when giving
away too much detail). The
IDL-way is to add data members
(properties) that hold the specific
information, like a Reason field of
type String.

Regardless of our use, the
CORBA IDL definition of the above
specified exception Permission-
Denied type with a string field
Reason is as follows:

exception PermissionDenied
{
string Reason;

};

Now, let’s consider the IDL file for
BobNotes with the interface
ICorBobNotes as defined earlier. As
you can see in Listing 3, we have
two methods inside the ICorBob-
Notes interface. CORBA forces us to
specify the exceptions that can be
raised by each of these methods,
and in this case the exception
PermissionDenied can be raised by
both methods (see Listing 4).

Note that the exception
PermisionDenied is defined outside
of the ICorBobNotes interface in

Listing 4. We could also have
embedded the exception defini-
tion inside the interface, which
would have made it a ‘local’ excep-
tion type, unable to be used by
other interfaces defined in the
same module.

VisiBroker Exceptions
VisiBroker already contains a
number of pre-defined exceptions
that are available to raise for every
interface method. These excep-
tions have pre-defined Object-
Pascal type definitions, derived
from SystemException (which, in
turn, is derived from Exception).
Table 1 over the page shows a list
of pre-defined exceptions, which
are described in more detail in the
documentation that comes with
VisiBroker for Delphi 5 and the
new CORBA.PAS unit.

Even more interesting, however,
are the user-defined exceptions,
which are derived from the
ObjectPascal type UserException
(which is also derived from Excep-
tion). This is the base class for the
ObjectPascal equivalent of our
PermissionDenied exception, which
we shall see after we run the
IDL2PAS utility on the new
BOBNOTES.IDL file.

module BobNotes
{
interface ICorBobNotes
{
void GetLines(in wstring User, in wstring Password, out wstring Lines);
void SetLines(in wstring User, in wstring Password, in wstring Lines);

};
interface CorBobNotesFactory
{
ICorBobNotes CreateInstance(in string InstanceName);

};
};

➤ Listing 3: BOBNOTES.IDL (no exceptions).

module BobNotes
{
exception PermissionDenied
{
string Reason;

};
interface ICorBobNotes
{
void GetLines(in wstring User, in wstring Password, out wstring Lines)
raises (PermissionDenied);

void SetLines(in wstring User, in wstring Password, in wstring Lines)
raises (PermissionDenied);

};
interface CorBobNotesFactory

{
ICorBobNotes CreateInstance(in string InstanceName);

};
};

➤ Listing 4: BOBNOTES.IDL (exceptions).

58 The Delphi Magazine Issue 56

C++Builder Exceptions
Before we use IDL2PAS on the
BOBNOTES.IDL file (to produce
Client Stubs for a Delphi 5 CORBA
client), we should first see if we can
produce Server Skeletons for a
CORBA server, written in any lan-
guage except Delphi 5. About a
year ago we saw JBuilder CORBA
servers, so this time I’ll use a
C++Builder CORBA server. One
warning: if you want to connect
C++Builder CORBA servers to
Delphi CORBA clients, make sure
you stick with VisiBroker 3.3,
included with C++Builder 4 Enter-
prise. C++Builder 5 Enterprise
ships with VisiBroker 3.4, which is
newer, but also breaks Delphi 5
CORBA code. After I installed
C++Builder 5 Enterprise (and

VisiBroker 3.4), I was no longer
able to run any CORBA server or
client written in Delphi 5 because
of DLL import routine mismatches.
A clear case of DLL Hell. Rein-
stalling VisiBroker 3.3 (and
VisiBroker for Delphi 5 just to be
sure) fixed things, so the following
C++ code has been compiled using
C++Builder 4 Enterprise. I haven’t
been able to get an official
response from VisiGenic (previ-
ously called Inprise) on this, but I
did hear similar reports from other
Delphi/C++Builder 5 users, so I
guess it’s not merely an oversight
on my part here.

Using IDL2CPP we can generate
Server Skeletons for the IDL file,
resulting in a ICorBobNotesImpl
class with two important methods:
GetLines and SetLines. To test the
fact that we can raise a CORBA
exception inside these methods, I
just entered the following line
inside each of them (doing nothing
at all, except for raising the
exception):

throw
BobNotes::PermissionDenied(
“Exception raised by BCB4");

The ORB will intercept the excep-
tion and pass it on to the CORBA
client, which will turn it into an
ObjectPascal native exception and
raise it there. Note that this func-
tionality was not available before
VisiBroker for Delphi.

Delphi Exceptions
Using IDL2PAS we can ‘compile’
the BOBNOTES.IDL file to two new
units: BobNotes_C.pas and
BobNotes_I.pas. The first of these,
BobNotes_C.pas, contains the
Client Stub definitions, including
the type definition of the
EPermissionDenied exception
(which suddenly has an E-prefix).

Note that if we had defined the
PermissionDenied exception inside
the ICorBobNotes interface
definition (in the IDL file shown in
Listing 4), then we would have had
another type name for the excep-
tion here, namely one with the
interface name followed by an
underscore embedded as well. In
our case, the PermissionDenied
embedded in the ICorBobnotes
interface would result in the EICor-
BobNotes_PermissionDenied Object-
Pascal exception type. Note that
the VisiBroker for Delphi docu-
mentation is slightly wrong on this
topic, as it says that when an
exception is defined within an

UNKNOWN The unknown exception

BAD_PARAM An invalid parameter has been passed

NO_MEMORY Dynamic memory allocation has failed

IMP_LIMIT Implementation limit violated

COMM_FAILURE Communication failure

INV_OBJREF Invalid object reference

NO_PERMISSION No permission for this operation

INTERNAL Internal ORB error

MARSHAL Error while marshalling parameter (or result)

INITIALIZE ORB initialization error

NO_IMPLEMENT Implementation not available

BAD_TYPECODE Bad TypeCode

BAD_OPERATION Invalid operation

NO_RESOURCES Insufficient resources for request

NO_RESPONSE Response to request not (yet) available

PERSIST_STORE Persistent storage failed

BAD_INV_ORDER Routine invocations out of order

TRANSIENT Transient failure

FREE_MEM Unable to free memory

INV_IDENT Invalid identifier syntax

INV_FLAG Invalid flag specified

INTF_REPOS Error accessing interface repository

BAD_CONTEXT Error processing context object

OBJ_ADAPTER Failure detected by Object Adapter

DATA_CONVERSION Data conversion error

OBJECT_NOT_EXIST Object does not exist

➤ Table 1: CORBA System
Exceptions.

EPermissionDenied = class(UserException)
private
FReason : AnsiString;

protected
function _get_Reason : AnsiString; virtual;

public
property Reason : AnsiString read _get_Reason;
procedure Copy(const _Input : InputStream); override;

end;

➤ Listing 5 : EPermissionDenied.

60 The Delphi Magazine Issue 56

interface, the ObjectPascal class name is prefixed with
a leading underscore, the interface name, followed by
another underscore, so in our case that would become
_ICorBobNotes_PermissionDenied (obviously, the first
underscore is in fact replaced by the letter E).

The code to handle the exception can be written
using a regular ObjectPascal try...exceptblock, as can
be seen in Listing 6 of this article.

Note that Listing 6 was made using the embedded
IDL exception definition (that is, EICorBobnotes_Perm-
issionDenied). Also note that this is currently the only
CORBA exception that I check for. In real life, however,
one should also check for CORBA system exceptions,
especially in the Button1Click method where a
connection to the CORBA Server is made, and all kinds
of possible errors (system exceptions) can occur.

Conclusions
VisiBroker for Delphi adds IDL2PAS for statically linked
CORBA clients. It also adds the ability for records and
exceptions, which finally brings the CORBA implemen-
tation in Delphi to a professional level. I still can’t wait
until the IDL2PAS for Delphi CORBA servers becomes
available, probably first in Kylix and at a later date in
Delphi 6 Enterprise.

Next Time
Next month, we will examine more enhancements
made to MIDAS 3, the Multi-tier Distributed Application
Services for multi-tier applications. We’ll see what,
why, how and more, including the new lower-than-ever
deployment licence model. So stay tuned...

Bob Swart (aka Dr.Bob, visit www.drbob42.com) is an
@-Consultant for TAS Advanced Technologies, co-
founder of the TAS-AT DOC Delphi Oplossings-
Centrum (www.tas-at.com/doc), as well as a freelance
technical author with numerous articles and some
book sections to his name.

unit Unit3;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, StdCtrls;

type
TForm3 = class(TForm)
Button1: TButton;
Memo1: TMemo;
Button2: TButton;
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);

private
public
end;

var
Form3: TForm3;

implementation
{$R *.DFM}
uses
CORBA, OrbPas30, CorbaObj, BobNotes_I, BobNotes_C;

procedure TForm3.Button1Click(Sender: TObject);
var
Factory: CorBobNotesFactory;
Client: ICorBobNotes;
Lines: WideString;

begin
Factory := TCorBobNotesFactoryHelper.Bind('CorBobNotes');

Client := Factory.CreateInstance('CorBobNotes');
Client.GetLines('Bob','swart',Lines);
Memo1.Lines.Add(Lines);
Client := nil;
Factory := nil

end;
procedure TForm3.Button2Click(Sender: TObject);
var
Factory,Client: TAny;
Lines: WideString;
User,Pass: WideString;

begin
Factory :=
Orb.Bind('IDL:BobNotes/CorBobNotesFactory:1.0');

Client := Factory.CreateInstance('CorBobNotes');
User := 'Bob';
Pass := 'swart';
try
Client.GetLines(User,Pass,Lines);

except
on E: EICorBobnotes_PermissionDenied do
Memo1.Lines.Add(E.Reason)

end;
Memo1.Lines.Add(Lines);
Client := unassigned;
Factory := unassigned;

end;
end.

➤ Listing 6: EICorBobNotes_PermissionDenied.

	WebBroker And IE5
	CORBA Exceptions
	VisiBroker Exceptions
	C++Builder Exceptions
	Delphi Exceptions
	Conclusions
	Next Time

